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ABSTRACT

Coronal mass ejections (CMEs) are the most geoe↵ective space weather phenomena,
being associated with large geomagnetic storms, having the potential to cause distur-
bances to telecommunication, satellite network disruptions, power grid damages and
failures. Thus, considering these storms’ potential e↵ects on human activities, accurate
forecasts of the geoe↵ectiveness of CMEs are paramount. This work focuses on exper-
imenting with di↵erent machine learning methods trained on white-light coronagraph
datasets of close to sun CMEs, to estimate whether such a newly erupting ejection has
the potential to induce geomagnetic activity. We developed binary classification models
using logistic regression, K-Nearest Neighbors, Support Vector Machines, feed forward
artificial neural networks, as well as ensemble models. At this time, we limited our
forecast to exclusively use solar onset parameters, to ensure extended warning times.
We discuss the main challenges of this task, namely the extreme imbalance between the
number of geoe↵ective and ine↵ective events in our dataset, along with their numerous
similarities and the limited number of available variables. We show that even in such
conditions, adequate hit rates can be achieved with these models.

Keywords: solar coronal mass ejections (310) — solar wind (1534) — space weather
(2037) – Neural networks (1933)

1. INTRODUCTION

The purpose of this work is to develop a machine learning (ML) based model that can predict
whether a coronal mass ejection (CME) will be geoe↵ective, using only numerical solar parameters
as input.
Coronal mass ejections are solar eruptive events whose magnetically charged particles can, directly

or indirectly, under certain circumstances, reach Earth and cause geomagnetic storms (GSs), i.e.,
be geoe↵ective. These storms represent perturbations in the Earth’s magnetic field, which have the
potential to lead to electrical systems and grids failure and/or damage, power outages, navigation
errors, radio signal perturbations, significant exposure to dangerous radiations for astronauts during
space missions, etc. Given the potential negative impacts of such storms, predicting their occur-
rence is paramount for enabling safeguarding of human technology (Schwenn 2006; Pulkkinen 2007;
Council 2013; Vourlidas et al. 2019; Temmer 2021). Moreover, CMEs are the most geoe↵ective solar
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phenomena (Schwenn et al. 2005; Gopalswamy et al. 2007a; Vourlidas et al. 2019), being associated
with more intense GSs than other, more frequent GS sources, such as high-speed streams (HSSs) and
corotating interaction regions (CIRs) (Kilpua et al. 2017).
The intensity of the storms can be measured by various geomagnetic indices such as Ap, Kp, AE,

PC or Dst (see Lockwood 2013, and references therein). Herein, we have chosen to use the values
of the Dst index (Sugiura 1964) to establish whether the magnetic field perturbations do, in fact,
manifest as storms. This is an index that is calculated using four geomagnetic stations situated at
low latitudes. Depending on the value of this index, it can be established whether these perturbations
are associated with geomagnetic storms or not. In terms of storm intensity, one of the most popular
classifications that takes into consideration the minimum value of the Dst index is that of Gonzalez
et al. (1994). Thus, a minor storm has -30 nT > Dstmin > -50 nT, a moderate storm has -50 nT >
Dstmin > -100 nT, while intense storms are considered to have Dstmin 6 -100 nT. Consequently, we
only considered GSs defined by a Dst value 6 -30 nT that were associated with ICMEs driven by
CMEs.
Literature available prediction models can be divided by the methods used and final purpose.

Methods based on physical processes are used to model the propagation of the CME through the
interplanetary space (Roussev et al. 2007) or the interaction of two di↵erent CMEs travelling towards
Earth (Lugaz et al. 2005; Manchester IV et al. 2008).
Methods based on physical processes with the purpose of predicting the arrival time of the CME at

Earth are preferred for operational use, e.g., the WSA-ENLIL Cone model being currently used by
the US National Ocean and Atmospheric Administration (NOAA) for providing warnings of potential
geomagnetic storms caused by Earth-directed CMEs and solar wind structures (Parsons et al. 2011).
ML methods, such as neural networks, are an emerging research area for this subject (Vourlidas

et al. 2019). Sudar et al. (2015) used a neural network and a dataset of 153 CMEs for predicting their
transit times. Wang et al. (2019) proposed an approach based on convolutional neural networks for
predicting CMEs’ arrival times. They analyzed transit times from the Sun to Earth of 223 geoe↵ective
CME events observed between 1996 to 2018 and obtained a 12.4 hours mean absolute error (MAE).
Fu et al. (2021) used a deep learning framework with image data as inputs, for the same purpose,
obtaining a MAE = 5.8 hours, as well as a 27% F1 score and 75.1% accuracy for the geoe↵ectiveness
prediction.
There are non-linear logistic models that can predict the association of CMEs with intense or super-

intense GSs (Srivastava 2005) - where events that generated a superintense GS are considered positive,
while those that generated an intense one are considered negative. Srivastava (2005) predicted 78%
geomagnetic storms from the training set, and 85% from the validation one, using a dataset con-
taining 64 CMEs observed between 1996 and 2002. Besliu-Ionescu et al. (2019); Besliu-Ionescu &
Mierla (2021) applied the same technique, using only solar parameters, but defined negative events
as CMEs that were not associated with any GS (i.e., Dst > -30 nT).
Another type of model employed for predicting geoe↵ectiveness is the support vector machine

(SVM). Choi et al. (2012) described its utility for predicting the geoe↵ectiveness of halo CMEs
(having the angular width > 120°). The dataset used for the study contained 733 events, observed
between January 1996 and April 2010. The authors used the grid search method to experiment
with various combinations of kernel functions and hyperparameter values, eventually obtaining 66%
accuracy, 76% real positive rate (TPR), 49% real negative rate (TNR), 72% false alarm rate (FAR).
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Table 1. A sample of the aggregated dataset used for this work.

CME CPA AW LS SOSFHI SOSFHF SOS20RS ACC MPA DST FI

1997-01-20 09:31:00 281 72 175.0 237.0 115.0 0.0 -3.3 285 0 0.470

2014-04-01 14:00:00 242 43 409.0 468.0 352.0 125.0 -8.3 237 0 1.210

2006-07-09 20:06:00 54 19 142.0 85.0 199.0 649.0 17.4 46 0 0.000

2010-12-21 02:48:00 48 114 369.0 300.0 439.0 449.0 4.6 62 0 0.000

2012-05-21 09:12:00 208 41 645.0 407.0 882.0 830.0 22.0 222 0 0.560

Note—Table 1 is published in its entirety in the machine-readable format. A portion is shown here for
guidance regarding its form and content.

In this study, we used data covering 19 years (1996-2014) to train and test our models, taking into
consideration all storms, regardless of their intensity (i.e., including minor ones). Despite evidence
that interplanetary parameters influence the geoe↵ectiveness of CMEs (e.g. Akasofu 1981; Srivastava
& Venkatakrishnan 2004; Yermolaev et al. 2005; Besliu-Ionescu et al. 2019), we decided to not utilize
such data, as it would limit the warning time from the order of days to that of hours, at best.
Such models can then be used as early warning modules for more complex setups, involving forward
modelling of solar eruptions and interplanetary propagation and interactions.
We employ a number of di↵erent supervised ML techniques for binary classification, as described

in section 3, using only solar parameters as inputs. Moreover, in response to the challenges posed
by the dataset (as discussed in section 2), we artificially generate new virtual geoe↵ective CME data
samples, which is an innovative aspect for this specific problem. In addition to this, we introduce the
notion of uncertainty regarding the lack of geoe↵ective potential for the CMEs prior to a geomagnetic
storm with no certain cause associated, by using sample weights.

2. DATA AND INTERPRETATION

2.1. The dataset

The dataset utilized for this research contains aggregated data from 3 di↵erent sources: the So-
lar and Heliospheric Observatory (SOHO; Domingo et al. 1995) Large Angle and Spectrometric
Coronagraph (LASCO; Brueckner et al. 1995) catalog, provided by the ‘Coordinated Data Analysis
Workshops (CDAW) Data Center’1, for the CMEs’ attributes, the Solar H-alpha Flare Index (FI)
(Atac 1987) values made available by courtesy of Kandilli Solar Observatory and NOAA’s ’National
Geophysical Data Center (NGDC)’ 2, as well as the catalog compiled by Richardson & Cane (2010)
for the correlation between the LASCO events and the Dst values of the associated geomagnetic
storms, as can be seen in Table 1.
We primarily use a cleaned selection of CMEs in the LASCO CDAW catalog and then use the

Richardson & Cane (2010) catalog to identify geoe↵ective events. If a CME is not directly connected
to a Richardson & Cane (2010) Dst event, we assume it to be non-geoe↵ective. The implications of
this are presented below.

1 https://cdaw.gsfc.nasa.gov/CME list/,(Gopalswamy et al. 2009)
2 https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-flares/index/flare-index/



4 Pricopi et al.

Since its launch in 1995, LASCO has been producing synoptic observations with a cadence of 12
minutes per coronagraph, to the present day. Two coronagraphs, C2 and C3, observe the corona
between heights of 2-6 and 3.7-32 solar radii, respectively. The catalog contains data for all the CMEs
manually identified since 1996. There are 9 numerical parameters available in the catalog for each
event, whose details (including computational ones) can be found in the LASCO documentation.
Out of these attributes, the mass and kinetic energy have not been included in our selected dataset.
This is due to the fact that the number of events for which these parameters’ values were not
computed amounts to approximately one third of the total number of CMEs in the catalog. As such,
the information provided by these two parameters proved to be insu�cient for this research. All
other attributes available in the catalog (i.e., Central Position Angle - CPA, Angular Width - AW,
Measurement Position Angle - MPA, Linear Speed - LS, 2nd order Speed at final height, 2nd order
Speed at 20 Rs, Acceleration - Acc) were taken into consideration. In order to obtain a ”clean”
dataset, all rows from the catalog (i.e., events) containing missing values in any of the columns
(e.g. 2000/03/05, 12:54:05) have been removed. This amounts to 461 events, out of which 108 miss
all speed-related values, together with Acc, and 353 have non-null LSs, but missing the other 3
parameters’ values. Analyzing the LASCO catalog, it can be noted that CMEs missing linear speeds
were considered very poor events, unable to be properly measured. After accounting for all discussed
above, we report one geoe↵ective event (2005/05/13 17:12, Dst = -247 nT) was lost as a result of
the dataset cleaning.
Since predicting the geoe↵ectiveness is fundamentally a binary classification task, an output label

is necessary. Therefore, we defined the labels as following:

• 1 (i.e., positive event; geoe↵ective CME) for CMEs associated with Dst 6 -30 nT;
• 0 (i.e., negative event; CME that was not geoe↵ective) for CMEs associated with Dst > -30
nT;

The events labeled 1 are computed using the Richardson & Cane (2010), based on their association
with a Dst value 6 -30 nT (172 out of 24403 events) where an ICME had an associated CDAW
event. All other CMEs, either not present in the catalog or correlated with a Dst value > - 30 nT,
were labeled 0 (24231 out of 24403 events). The distribution of the Dst values in the dataset can be
observed in Figure 1 left and right.

Figure 1. Left: Histogram (logscale) of all Dst values in the dataset. Right: Histogram of the Dst values
6 -30
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In addition to the above-mentioned parameters, we use the FI as input for our models, similar
to Uwamahoro et al. (2012)’s approach concerning the use of neural networks for predicting the
geoe↵ectiveness of halo CMEs. The index’s purpose is to quantify the daily flare activity. We have
utilized the FI based on findings of Srivastava (2004) where the association of some CMEs (i.e., fast,
full-halo events originating from low and middle latitudes, close to central meridian) with flares is
a significant driver for intense geomagnetic storms. Importantly, the FI does not address individual
events, but daily averages of flaring activity. Thus, this parameter does not represent a one to one
flare to CME association.
On this topic, we also mention the study of Yashiro et al. (2006) that focused on the individual

associations between CMEs and flares. The authors provide a maintained list that is available
online3. We have cross-correlated this list with our subset of geoe↵ective CME’s and found that
<40% of combined CDAW and Richardson & Cane (2010) events could be associated with a flare.
Due to the extreme class imbalance issues discussed below in sec. 2.2, we considered that removing
more than half of our already small geoe↵ective subset would result in weak model performances.
A manual association attempt on the remaining events could not be confidently established by us.
Thus, we did not utilize any individual CME to flare association throughout this work.
Due to the FI only being made available for the 1976-2014 timeframe, we needed to also restrict

the data from the LASCO catalog up until 2014 only. Therefore, the collected data covers the period
between 1996 and 2014. After the removal of samples containing empty cells, as mentioned above,
and restricting the period from 1996 to 2014, our final dataset contains 24403 CMEs, out of which
172 are geoe↵ective.
Using the de facto approach, we manually selected the independent features to be used as inputs.

Therefore, the features used for all models were CPA, AW, LS, Acc, FI, unless specified otherwise.
However, we also experimented with an automatic feature selection by reducing the total number
of features using Principal Component Analysis (PCA, Jolli↵e 2005). PCA works by redefining
data attributes by selecting the first k components in descending order of their variances (average
of the squared di↵erences from the mean). The feature redefinition refers to creating the principal
components, which are linear combinations of the initial variables. From a visual perspective, the
principal components can be interpreted as the directions associated with the biggest variances (i.e.,
most dispersed values) in a multidimensional scatterplot. These directions are, in fact, eigenvectors,
while the eigenvalues signify how important the directions are, or, in other words, how much of the
most significant information regarding any data point they represent. Choosing the highest variance
values when lowering the number of attributes is, therefore, important in order to keep as much
information from the original data as possible. The PCA implementation utilized (see section 3) has
the option of automatically choosing the number of principal components by using Minka’s Maximum
Likelihood Estimates method (MLE, Minka 2000). Using this, we obtained a dataset with only one
less feature. Therefore, we also chose to use k = 5 (the number of independent variables in the
dataset) for the number of components to be returned. It is important to note that the new features
obtained as a result of using this method are harder to interpret.
In order to improve both the models’ performances and the training times, a feature scaling pre-

processing step was used. Both standard scaling (eq. 1) and l2 normalization (i.e., scaling samples

3 https://cdaw.gsfc.nasa.gov/pub/yashiro/flare cme/fclist pub.txt
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to have unit norm) were tested. However, standard scaling led to the best results in all cases.

z =
x� µ

�
,where µ = mean of training samples and � = standard deviation (1)

2.2. Challenges in data interpretation

One of the most salient observations regarding the data, which is also the main obstacle for creating
high-performance, reliable models (i.e. binary classifiers in this case) is the extreme class imbalance,
as only 0.71% of the events in the dataset are geoe↵ective. ML models are sensitive to skewed
distributions (Krawczyk 2016a; Kaur et al. 2019; Tyagi & Mittal 2020), resulting in a tendency to
more frequently predict the label of the majority class. In consequence, models will commonly appear
to yield high proportions of correctly labeled samples for imbalanced classification problems. In
other words, they will have high accuracy values. However, this would be a misleadingly optimistic
performance evaluation, since this could translate into simply outputting the label with the most
occurrences, instead of actually distinguishing between classes. This discussion is extended in section
3. In this particular case, a dummy, untrained predictor outputting only the label of the majority
class would have 99.29% accuracy, corresponding to the proportion of 99.29% of events in the dataset
that were not geoe↵ective. However, the model would identify 0 positive events, failing to achieve
its primary goal of forecasting the geoe↵ective CMEs, despite the high accuracy value. We include
the accuracy metrics for methodological completeness reasons, but we stress out that this metric in
particular is of less importance when interpreting model performance.
Therefore, since the minority class is our main focus, due to the potential negative e↵ects of the

events belonging to it, the imbalance issue needs to be addressed. Our attempts at overcoming this
challenge include using class weights (Krawczyk 2016b) and creating artificial data samples for the
minority class using the Synthetic Minority Oversampling TEchnique (SMOTE, Chawla et al. 2002;
Fernandez et al. 2018).
In order to better understand the necessity for class weights, a few elementary notes on the principles

behind the models described in this paper are required. A model learns to map inputs to outputs
(i.e., to predict/output values close to the real ones), through training. Generally, training refers to
making adjustments to several parameters, according to the error between the real output and the
predicted one, in order to minimize it.
Given that, as previously stated, the geoe↵ective CMEs are of more concern, information about their

importance needs to be embedded in the model, which can be achieved with the help of weights.
The weights are used together with the error between the real output and the predicted one for
determining the next adjustments to the parameters. For this specific case, the desired outcome
is a more significant change of the model’s parameters as a consequence of the model predicting 0
instead of 1. In other words, a model should be penalized more severely when misclassifying a more
important (here, geoe↵ective) event.
For this research, we considered the importance of an event to be the weight of the class it belongs

to (weightc for class c), which is inversely proportional to the frequency of the class’ appearances in
the dataset (eq. 2).

weightc =
total number of samples

number of classes * number of samples belonging to class c
(2)

Thus, the weights associated with the samples are 69.72 for the events belonging to the minority
class and 0.5 for those in the majority class.
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The other technique for overcoming the class imbalance is oversampling. This refers to the cre-
ation of additional samples, most commonly belonging to an underrepresented class. One way of
achieving this is random oversampling, meaning creating multiple copies of some of the samples from
the minority class, selected at random. However, this is similar to using higher weights for those
samples, by feeding them more times to the model. Therefore, we chose to use the Synthetic Minority
Oversampling Technique (SMOTE) to create new samples altogether, as described in section 3.6.
Another observed issue is the high similarity degree between samples from di↵erent classes, known as

class overlap. Visually, this problem manifests as two or more points from di↵erent classes overlaying
each other. This can be visualized in the figures below, representing only the negative events (fig. 2
left), as well as both negative and positive ones (fig. 2 right) in the dataset, respectively. In Figure
2 right, it can be observed that there are points belonging to the positive class overlapping negative
ones. In other words, some samples have approximately equal probabilities of belonging to di↵erent
classes (in this case 0 and 1), turning this prediction into a particularly challenging task. The 2D

Figure 2. Left: UMAP of the negative events only. Right: UMAP of both negative and positive events

plots presented in fig 2 left and rigth were obtained with the help of the dimensionality reduction
technique called Uniform Manifold Approximation and Projection (UMAP, McInnes et al. 2020).
Dimensionality reduction refers to data transformations meant to reduce the number of attributes
used to describe the essential information embedded in the data. The use of this technique enabled
the 2D display of the data, which provides visual insight into the it. While, arguably, the plots
are oversimplified, overlapping is apparent by data analysis, which shows substantial similarities in
the feature values of the two classes. Vuttipittayamongkol et al. (2021) show that class overlap is
a highly overlooked issue which negatively impacts classifications, amplifying the negative e↵ects of
class imbalance. Due to the overlap, the models tend to misclassify positive instances in the proximity
of the class boundaries, which will be discussed in section 4.
We hypothesize that one of the causes behind the class overlap issue is the limited number of

independent features used for distinguishing between positive and negative events. We consider the
location of the origin of the CME and its direction (Moon et al. 2005) as examples of such features,
that are not adequately contained in any of the catalogs we used. Additionally, information that
is also likely to reduce the class overlap is the CMEs’ association with flares, as studied by Yashiro
et al. (2006).
Another potential issue is the presumed incompleteness of the known associations between geo-

magnetic storms and the causal CMEs identified by Richardson & Cane (2010). In other words, not
all the disturbances identified by Richardson & Cane (2010) are correlated with a specific LASCO
identified event, which allows for presumptions regarding their cause. One reason behind this issue
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is the fact that, due to the variance of travel times, it is not always possible to determine which, out
of several di↵erent CMEs, was the unquestionable cause of a specific disturbance. This means that,
given that we consider all CMEs not found in the catalog compiled by Richardson & Cane (2010)
to not be geoe↵ective, we could be training the models with inaccurate information (i.e. events
labeled as 0 due to lack of certainty regarding their exact cause that are, in fact, geoe↵ective). In
the Richardson & Cane (2010) catalog, there are 227 events with no associated LASCO CME cause
having occurred until 2015, out of which 131 have Dst 6 -30. Following the approach described by
Uwamahoro et al. (2012), we consider all CMEs from 15 hours and up to 5 days prior to any of
the 131 geoe↵ective disturbances identified by Richardson & Cane (2010) before 2015 that have no
association with a LASCO event to be possibly geoe↵ective. This means that neither the label 0, nor
1 is unequivocal for these events.
We experimented with capturing such information about potentially geoe↵ective events by using

example weights. For this investigation, the samples were not assigned weights based only on the
class they belonged to, as previously described. All potentially geoe↵ective events, as defined above,
were assigned half the weight of an event that was not geoe↵ective. This way, if the model predicted
a potentially geoe↵ective event as geoe↵ective, it would not be penalized as highly as it would be for
misclassifying an event that has an unambiguous label.

3. MACHINE LEARNING METHODS, THEIR APPLICATIONS AND RESULTS

For this research, we studied and compared the following binary classifiers from the perspective
of predicting CMEs’ geoe↵ectiveness: logistic regression, K-Nearest Neighbors, Support Vector Ma-
chines, feed forward artificial neural networks and ensemble models. For the implementations of the
various models and algorithms (e.g., preprocessing, grid search, cross validation, PCA), the scikit-
learn library (Pedregosa et al. 2011) was used, unless stated otherwise. In addition to this, the
artificial neural networks were created with the help of TensorFlow 2 (Abadi et al. 2015) and Keras
(Chollet et al. 2015).
In this section, the principled inner-workings of the models employed will be described, together

with our actual experiments and the hyperparameter options we explored. Hyperparameters are
model parameters that are not learned and need to be submitted beforehand. Finding their optimal
values is one of the most important aspects of creating a model and represents a process called
hyperparameter tuning, which generally involves testing various inputs. For this study, with the
exception of the neural networks, this process was performed using the grid search approach. Grid
search involves specifying the values to be tested for each desired hyperparameter, exhaustively trying
all the possible combinations and comparing the yielded performances in order to find the optimal
set of values. The significance of each hyperparameter we tuned, together with the values used, will
be detailed for each model.
When evaluating the performance of our models, we analyzed and compared a number of per-

formance metrics (recall, precision, F1 score, accuracy and specificity), as detailed in the following
paragraphs. For a better understanding of the terms used for defining the metrics and their evalua-
tion, the essential notations used throughout this paper are the following:

• TP - True Positive (event correctly predicted to be geo↵ective)
• TN - True Negative (event correctly predicted as not geoe↵ective)
• FP - False Positive (false alarm)
• FN - False Negative (undetected geoefective event)
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We considered the recall (eq. 3) - also known as sensitivity - to be the main performance indicator,
given the high cost associated to not anticipating a potential storm (e.g., without any warning,
electrical/satellite/communication systems would not be safeguarded). The recall value should be
interpreted as the percentage of the known geoe↵ective events that were correctly identified by the
model.

recall =
TP

TP + FN
(3)

Recall’s complementary performance metric is the precision (eq. 4), which indicates how many of
the events predicted to be geoe↵ective actually were geoe↵ective.

precision =
TP

TP + FP
= 1� False Alarm Ratio (4)

Despite the fact that the recall and precision can each be improved at the expense of the other, it is
decidedly desirable for both their values to be as high as possible. A good indicator of their balance
is given by the F1 score (eq. 5):

F1score =
2 ⇤ (precision ⇤ recall)
precision+ recall

(5)

Additionally, we also computed the accuracy (eq. 6), which is equal to the proportion of correct
predictions. We reiterate that the accuracy is not a reliable metric by itself in the case of binary
classification on imbalanced data.

accuracy =
TP + TN

TP + TN + FP + FN
(6)

Finally, the specificity (eq. 7) refers to the percentage of correctly labeled negative events.

specificity =
TN

TN + FP
(7)

For testing the performances of our models, we used stratified k-fold cross validation (Refaeilzadeh
et al. 2016), with the default value k = 5. This means the data is shu✏ed and split into 5 subsets,
each preserving the approximate proportion of positive to negative samples in the original dataset.
The models are trained on 4 out of 5 subsets and tested on the remaining one. The process is
repeated until the model has been trained and tested on all subsets (i.e., 5 times). The performance
values are the average for all tests. Therefore, this evaluation method is expected to yield less
biased results, given that the models are not tested only on a fraction of the data, which could have
various particularities, making it easier or harder to predict on. However, in order to obtain a visual
representation of the predictions with the help of UMAP (similar to those in Figure 2 left and right,
a single test set had to be chosen. For this, we used 20% of the data, split in a stratified manner, as
further described in section 3.5. In the following subsections, the methods and models used for the
experiments are detailed.

3.1. Logistic Regression

The logistic regression is a statistical model used to obtain a dependent variable (the label) based
on one or more independent ones (the attributes). The predicted value can be interpreted as the
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probability of the event belonging to the positive class (e.g.: a value of 0.2 represents a 20% chance
that the real label is 1, leading to the choice of the predicted label to be 0). This is expressed in eq.
8, where X represents all the examples, while y is one real target value and ŷ is a predicted one:

ŷ = P (y = 1|X), where (8)

ŷ = �(W TX + b), and (9)

�(z) =
1

1 + e�z
(10)

Generally, in the case of normal distributions, the threshold used for discriminating between the
2 classes is 0.5, but, in practice, the threshold may depend on the context of the problem and,
implicitly, the class imbalance (Fernández et al. 2018). The adjustments of the threshold is known
as threshold moving.
Since the distribution of the classes in the dataset is not normal, we expected that the separation

between the classes using the threshold associated to normal distributions to be susceptible to im-
provement. Given that there is no a priori knowledge of a cost associated with missclassifications,
we have tested values between 0.5 and 0.9 for the threshold, through cross validation. Similarly, Fu
et al. (2021) analyzed the influence of 20 di↵erent thresholds between 0 and 1, observing performance
improvements when choosing a value higher than 0.5.
We discovered empirically that for this model, the threshold leading to the highest F1 score (there-

fore the best balance between recall and precision) is 0.9. The performances obtained with all other
tested thresholds are summarized in Table 2.

Table 2. Performances of the linear regression model with class-balanced weights with various thresholds,
on the entire dataset, after 5-fold cross-validation

LR Model Threshold 0.5 0.6 0.7 0.8 0.9

Recall 89.24% 86.63% 82.00% 79.21% 73.24%

Precision 9.79% 11.39% 12.98% 14.59% 16.29%

F1 score 17.64% 20.13% 22.39% 24.56% 26.63%

Accuracy 94.11% 95.13% 95.96% 96.61% 97.13%

Specificity 94.13% 95.14% 96.05% 96.73% 97.28%

Table 3. Performances of linear regression models with threshold = 0.9, on the entire dataset, after 5-fold
cross-validation

LR Model Balanced weights Uncertainty-based weights With PCA, 5 components

Recall 73.24% 72.65% 72.65%

Precision 16.29% 15.98% 16.60%

F1 score 26.63% 26.18% 27.02%

Accuracy 97.13% 97.11% 97.23%

Specificity 97.28% 97.28% 97.40%
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Using example weights based on our certainty regarding whether the events were geoe↵ective or
not did not lead to remarkable performance changes, while training the model using 5 principal
components instead of the manually selected independent features led to precision increase, as shown
in Table 3.

3.2. K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a similarity-based algorithm, where similarity is expressed in terms
of a generalized concept of distance. Various ways of computing the distance can be used, e.g.,
Manhattan (eq. 11), euclidean (eq. 12), Minkowski (eq. 13). KNN models assign the label of an
event based on the label of the majority of the k most similar examples, where k is predefined (not
to be confused with the number of folds used for cross-validation, which is an independent variable).
This is done by following the steps below:

1. Compute the distance between the point (example) whose label needs to be predicted and all
the labeled points in the dataset.

2. Choose the first k smallest distances (i.e., the k-nearest neighbors).
3. Assign the label of the majority of the k-nearest neighbors to the unlabeled point.

Simply using the predominant label in a group of k neighbors to decide upon the label of a new
sample is known as using uniform weights. However, for extremely imbalanced datasets, such as
the one used for this research, there is a high chance the majority of a sample’s neighbors belong
to the majority class. This means that regardless of how similar a sample might be to another one
belonging to the minority class, the low number of such examples might not be enough to form a
majority in many cases, resulting in numerous misclassifications. One way of tackling this issue is by
using distance-based weights when determining the label. In other words, the smaller the distance
between a sample and its neighbor (i.e. the more similar they are), the more the label of the latter
will weigh when deciding what the prediction should be. Therefore, the role of distance-based weights
is to ensure that minority samples have the potential to counterbalance the high number of majority
samples. For this study, we have experimented with various values for k, in order to find an optimal
one, bearing in mind that too small a value could make the model sensitive to noise, while too big
a value eventually leads to no performance improvements, at the cost of computation time. At the
same time, we have also attempted to use di↵erent weights and distances. The values tested using
grid search were:

• k = 3, 5, 7;
• weight: uniform and distance-based;
• distance: Manhattan (eq. 11), euclidean (eq. 12), Minkowski (eq. 13) with p = 3;

d(x, y) =
X

|x� y| (11)

d(x, y) =
qX

(x� y)2 (12)

d(x, y, p) = (
X

|x� y|p)
1
p (13)

The performances of the best KNN models are summarized in Table 4. Our grid-search experiments
showed the optimal number of neighbors in this case to be 7 when using uniform weights and 5 when
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using distance-based weights. The KNN models attained the highest precision values out of all tested
models, while, in turn, also having the lowest recall values. The best precision values were obtained
using uniform weights and the Minkowski distance, with p = 3. Simply using a distance-base weighted
approach, with the same hyperparameters, led to no recall improvement, accompanied by an ⇠10%
precision decrease, which could indicate the need for better signaling great di↵erences between the
values of various examples’ features. As indicated by the grid search, Manhattan distance is a more
suitable distance metric. Nonetheless, the discrepancy between the recall increase and the precision
decrease when using distance-based weights, as opposed to uniform weights, emphasizes the models’
di�culty in overcoming the class imbalance and class overlap. In terms of similarity, additional
information could have a great impact on distinguishing between the events that are geoe↵ective and
those that are not.

Table 4. Performances of KNN models on the entire dataset, after 5-fold cross-validation

KNN Model
7 neighbours
Minkowski distance
uniform weights

5 neighbours
Manhattan distance
distance-based weights

PCA, 5 components
7 neighbours
Minkowski distance
uniform weights

Recall 4.03% 7.51% 2.89%

Precision 67.99% 22.94% 60.00%

F1 score 7.49% 11.17% 5.49%

Accuracy 99.29% 99.19% 99.30%

Specificity 99.97% 99.85% 99.98%

After 5-fold stratified cross-validated predictions, the KNN model with uniform weights correctly
identified 3 geoe↵ective CMEs, all being full halo events (namely, the CMEs from 2000-07-14 10:54,
2002-08-16 12:30, 2004-07-25 14:54).
The model also predicted 12 false positives, all having the CPA and AW equal to 360 (i.e., full

halos). An example of such an event is the CME from 2012-03-07 01:30. The false alarm’s attributes
are presented in Table 5, together with those of its nearest neighbors, listed from closest to farthest.
It can be observed that, out of the 7 events considered to be most similar to it, 5 were geoe↵ective,
which, consequently, led to the model predicting the event to be geoe↵ective as well. The model’s
high number of false positives, compared to its number of true positives, is due to the high number
of geo↵ective CMEs having AW = 360 in our dataset (113 out of 172), in addition to the even
higher number of CMEs having AW = 360 that were not geoe↵ective (537) and suggests that there is
additional information needed to better di↵erentiate between the full halo CMEs that are geoe↵ective
and those that are not.

3.3. Support Vector Machines

The Support Vector Machines (SVM, Cortes & Vapnik 1995) aim to find the optimal hyperplane
delimiting the points belonging to 2 classes (while the method can actually be used for multiple
classes, this is outside the scope of this work). The hyperplane represents an ensemble of points in
an n-1 dimensional vector space, where n is the number of attributes used (e.g., for bidimensional
datasets, i.e., having only 2 attributes, the hyperplane, is, in fact, a straight line; for 3D data, the



Predicting CME Geoeffectiveness 13

Table 5. Example of a false alarm detected by the KNN model with uniform weights, together with its
nearest neighbors

CME LS Acc FI Dst Geoe↵ective

2012-03-07 01:30 1825 -160.9 36.29 0 0

2003-10-29 20:54 2029 -146.5 31.88 -383 1

2005-09-10 21:52 1893 -171.7 43.74 0 0

2005-01-17 09:30 2094 -118.8 33.60 -80 1

2000-07-14 10:54 1674 -96.1 25.15 -301 1

2002-08-16 12:30 1585 -67.1 29.66 -106 1

2003-11-02 09:30 2036 -64.2 30.47 0 0

2006-12-13 02:54 1774 -61.4 47.55 -162 1

Figure 3. Illustration of the principles behind the SVM approach
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classes will be separated by a 2D plane, etc). The essence of this algorithm lies in the way the
optimal hyperplane is found, which is by ensuring that the area between the plane and the closest
points (which are called the support vectors) is maximal. In the case of binary classification with
linearly separable classes, the decision function is:

W TX + b = 0 (14)

Thus, the predicted labels are as follows:

ŷ =

8
<

:
0, if WTX + b < 0

1, if WTX + b � 0
(15)

Ensuring that the separation area is maximal is equivalent to finding the W that maximizes the
value of 2

||W || .

However, not all datasets are initially linearly separable (e.g., Figure 3 and Figure 4 left). Neverthe-
less, it is generally considered that there does exist a higher dimensional feature space in which the
data can be linearly separated (Cover’s Theorem, Cover 1965; Haykin 2009) (fig. 4 right). Therefore,
mapping the initial values to this new space is required.
Since this transformation can be computationally demanding, the kernel trick (Girolami 2002) is

used. The kernel is a function whose inputs are vectors (in the original space) returning their dot
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Figure 4. Left: data that is not linearly separable. Right: hyperplane separating data in a 3D space

product in the feature space, instead of explicitly computing the new coordinates. Thus, a kernel
function k is defined as:

k(a, b) = h�(a),�(b)i (16)

for a, b 2 X, where � : X ! <n.
For SVMs, the kernel function is a hyperparameter itself. The ones we have experimented with

are: linear (eq. 17, also known as a ”non-kernel”, since it does not project the data onto a higher
dimension), polynomial (eq. 18), Radial Basis Function (RBF) (eq. 19) and sigmoid (eq. 20).

k(a, b) = a · b+ c, where c = 1 for these experiments (17)

k(a, b) = (�ha, bi+ r)d (18)

For the polynomial kernel, the tested degrees were 2, 3, 4 and 5. For all our experiments, the value
of r, which is also referred to as the 0 coe�cient was 0.

k(a, b) = exp(��||a� b||2) (19)

For the RBF kernel, we experimented with � 2 {10p1 , 2p2}, where p1 2 N\[-2, 2] and p2 2
{±15,±11,±9,±5,±3}. This hyperparameter controls the region of influence of a single example,
where a lower value allows for a larger area (i.e., more influence).

k(a, b) = tanh(�ha, bi+ r) (20)

For the sigmoid kernel, � had the default value set for the scikit-learn implementation, equal to the
n ⇤ �2(X))�1, where n is the number of attributes and �2(X) denotes the variance of X, while, as
previously mentioned, r was equal to 0.
The other hyperparameter that was tuned as part of our experiments was the regularization pa-

rameter C, whose role is to trade between a simple decision and a low number of missclassifications.
Thus, the lower its value, the smoother the decision surface; the higher its value, the fewer the
incorrect predictions. The domain of C values explored was {10p1 , 2p2}, where p1 2 N\[-2, 2] and
p2 2 {±15,±11,±9,±5,±3}, similar to Choi et al. (2012). Nonetheless, it should be noted that
however appealing a perfect classification is, this most commonly points to the issue of overfitting
(Hawkins 2004), which manifests as the model having poor generalization skill, despite excellent
training performance. We ensured the models learned to generalize well by examining the train and
test errors at cross-validation and ensuring there were no high discrepancies between them.
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Performance wise, out of all the SVM models applied on original data only, with balanced weights,
the best results were obtained with the polynomial kernel, according to the F1 score, as shown in
Table 6.

Table 6. Performances of various SVM configurations on the entire dataset, with balanced weights, after
5-fold cross-validation. The 5 columns represent the following configurations: (1) - linear kernel; (2) -
polynomial kernel, degree=2, C = 1, � = 1/(no. features · Var(X)); (3) - RBF kernel, C = 2�3, � = 2�15;
(4) - RBF kernel, with uncertainty, C = 2�5, � = 2�11; (5) - linear kernel, with PCA, 5 components

SVM Model (1) (2) (3) (4) (5)

Recall 90.16% 81.44% 71.69% 76.36% 89.51%

Precision 8.92% 14.38% 14.50% 14.16% 8.73%

F1 score 16.24% 24.43% 24.11% 23.89% 15.91%

Accuracy 93.40% 96.40% 96.79% 96.55% 93.32%

Specificity 93.42% 96.51% 96.51% 100.00% 93.35%

Despite the di↵erent performance values, some false positives and false negatives are common to all
3 models. There are 18 geoe↵ective CMEs that all these SVM models fail to identify, e.g., the event
on 2005-06-09 14:36:05, actually labeled as ”Very Poor Event” in the LASCO catalog, associated
with a Dst = -106 nt, as well as 627 CMEs that the models incorrectly classify as geoe↵ective. Out
of these 627 examples, 513 have the Central Position Angle = Angular Width = 360 (halo events)
e.g. the event on 2013-12-07 07:36:05.
The experiment regarding the use of special weights for what we suspected could be potentially

geoe↵ective events increased the recall value of the model having an RBF kernel with⇠5%, accounting
for a <1% precision drop, while for the models with di↵erent kernels, the recall value dropped. The
use of PCA lowered both the recall and the precision values, however, with <1% each. These
performances are also summarized in Table 6, columns (4) and (5).

3.4. Artificial Neural Networks

Feed-forward, fully connected artificial neural networks (Rosenblatt 1958; Rumelhart et al. 1986)
are computational systems that map inputs to one or more outputs, having the following layered
structure (fig. 5 left), where each layer is fully connected to the previous one:

• 1 input layer, representing the input variables and the bias
• 1 or more hidden layers, each with a previously defined number of neurons
• 1 output layer, representing the prediction

The number of both the layers and the neurons are hyperparameters that will be tuned.
The working principle of such a network is based on the neurons’ way of working, which is similar

to a linear regression, as shown in figure 5 right. However, the complexity of the model is increased
with the addition of the activation function.
Therefore, the output of the ith neuron in the hidden layer l is expressed as:

y[l]i = '(W [l]T
i X + b[l]i ) (21)

where ' is the activation function and X are the outputs of all the neurons from layer l - 1.
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Figure 5. Left: the architecture of a feed-forward artificial neural network. Right: an artificial neural
network neuron

Neural networks are characterized by multiple hyperparameters, which will be discussed in the
following paragraph. In terms of activation function, the sigmoid was used for the last layer, since
the result is mapped to a number between 0 and 1, which can be interpreted as a probability for
binary classification. For all other neurons, the Rectified Linear Unit (ReLU, Nair & Hinton 2010)
(eq. 22) was chosen, being an adequate common activation function (Nwankpa et al. 2018).

ReLU(x) = max(0, x) (22)

The optimization algorithm used was Adam (Kingma & Ba 2017), which has an adaptive learning
rate whose default initial value is 1e-3 (for the TensorFlow and Keras implementations). Although it
is considered that this algorithm needs little, if any, manual learning rate adjustments, we also tested
the following values: 1e-1, 1e-2, 5e-2, 5e-3. The other specific parameters were unmodified. The loss
function of choice was binary cross-entropy. The best batch size proved to be 32, out of the set of
values we experimented with, i.e., 16, 32, 64, 128. The optimal number of epochs varied based on
the number of neurons and learning rate. We employed the early stopping technique (Prechelt 1998)
for finding the epoch when the loss value no longer decreases. We trained and evaluated networks
with 1 and 2 hidden layers, each with up to 10 neurons. Values higher than this proved to lead to
either overfitting or no performance improvements, case in which less complex models that are easier
to interpret are favoured. For these hyperparameter tuning experiments, the KerasTuner (O’Malley
et al. 2019) framework was used.
What stood out for the ANN experiments was the similarity between the results from various

experiments and architectures (including an additional hidden layer). A possible explanation for this
may be the lack of essential data for distinguishing between the CMEs that are geoe↵ective and those
that are not (e.g., interplanetary parameters) that such a model type could e↵ectively use for better
predictions.

3.5. Ensemble models

Ensemble models (Zhang & Ma 2012) harness the power of two or more di↵erent models combined,
in an attempt to achieve better prediction results than the individual ones. The results yielded
by this approach can typically be interpreted as more confident ones, being obtained by combining
the prediction capabilities of more than one metaphorical expert (i.e., model). For this research, a
stacked classifier was employed. Stacked classifiers use the predictions of the models aggregated in
the ensemble as inputs for an additional meta-learner. This learner is trained to find an optimal
manner to combine the previous prediction in order to get a final label as accurate as possible.



Predicting CME Geoeffectiveness 17

Table 7. Performances of ANN models for various experiments, on the entire dataset, after 5-fold cross-
validation. The headers represent the following 1 hidden layered architectures:
(1) - 3 neurons, learning rate = 1e-3, batch size = 32, 25 epochs, balanced weights;
(2) - 7 neurons, learning rate = 1e-3, batch size = 32, 23 epochs, balanced weights;
(3) - 9 neurons, learning rate = 1e-3, batch size = 32, 30 epochs, with sample weights for uncertainty;
(4) - 3 neurons, learning rate = 1e-3, batch size = 32, 23 epochs, after using PCA with 5 components,
balanced weights;

ANN Model (1) (2) (3) (4)

Recall 92.40% 91.11% 90.34% 89.35%

Precision 7.48% 7.82% 8.13% 5.34%

F1 score 13.84% 14.41% 14.81% 10.05%

Accuracy 91.88% 92.37% 92.64% 88.03%

Specificity 92.92% 91.86% 92.52% 89.25%

We decided to build an ensemble model with the aim of improving the precision, without signifi-
cantly decreasing the recall value. Therefore, naturally, the ensemble needed to include both a model
with high precision and one with high sensitivity. We decided on using the KNN model (with uniform
weights, 7 neighbours and Manhattan distance), given that it has the highest precision. Additionally,
a logistic regression model with balanced class weights and 0.9 threshold was used, given both its
predictive performances and simplicity (e.g., compared to the more complex neural network). For
the meta-learner, we chose a logistic regression model, which is also the scikit-learn default option
for such classifiers, with the same class cuto↵.
The recall values obtained for all models employed in this study generally varied between 70% and

91%, with precision values roughly fluctuating between 7% and 16%, with the exception of the KNN
models, whose precision could reach 67.9%, for a recall of 4%. As previously mentioned, while a recall
value as high as possible is desirable, we decided to choose the best model according to the highest
F1 score value, and subsequently, the best precision value among models with a recall value of at
least 75%. Therefore, we consider this stacked classifier to be the best performing model. In order to
obtain a visual representation of the correctness of the predictions, the dataset was randomly shu✏ed
and split into 2 subsets, while preserving the 0-1 label ratio of the original dataset for all the subsets.
20% of the data (4881 samples, out of which 33 positive ones) was set aside for final tests, while the
remaining 80% account for the traindev (used for training and development) data. The model was
trained on the traindev data and tested on the test set. The resulting 4 types of binary prediction
categories, as summarized in Sec. 3, are showcased in Figure 6.
This model correctly classifies 4719 out of 4849 negative samples, represented by the blue dots in

Figure 6. The 7 false negatives (red dots) are presented in Table 8. However, out of these 7 false
negative events, 5 are questionable events, having either poor/very poor CME data or an uncertain
CME association.
In addition to this, the model predicted 130 false alarms, out of which 92 were full halos, having

CPA = AW = 360. Analyzing Figure 6 above, together with Figure 2 left and right, while bearing
in mind that the first one depicts only 20% of the data (i.e., the test set), whereas the other two
are representations of the entire dataset, the pattern followed by the samples incorrectly classified as
geo↵ective can be easily observed. It is, therefore, more apparent how the similarities between some
geoe↵ective samples and others pose a substantial challenge for the models.
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Figure 6. The predictions of the ensemble model, on the test set (20% of the data), colored by their
correctness

Table 8. Example false negatives predicted by the ensemble model on the test set

CME CPA AW LS Acc FI Dst

1997-10-06 15:28 139 174 293 15.9 0.08 -130

2000-05-13 12:26 166 182 666 10.8 2.09 -92

2001-09-20 19:31 306 207 446 -3.4 3.08 -73

2001-09-27 04:54 226 182 509 36.6 5.25 -66

2004-07-22 07:31 66 151 700 4.8 13.59 -136

2005-06-09 14:36 260 151 377 -3.7 0.56 -106

2011-10-02 02:00 167 103 259 0.6 7.85 -43

The stacked classifier qualifies as our best model, given its high recall and F1 score values, as noted
in Table 9 (the second and third columns). This model has been employed for additional experiments,
described below, that are summarized in the fourth and fifth columns.

Table 9. Performance of the stacked classifier on the full set with 5-fold cross validation, test, and subsam-
pled data sets

Stacking classifier Entire dataset Test dataset
Samples with
AW> 60

Samples with
AW > 120

Recall 80.28% 78.99% 78.59% 73.59%

Precision 15.19% 14.82% 17.12% 17.61%

F1 score 25.54% 24.96% 27.95% 28.40%

Accuracy 96.67% 96.65% 90.69% 74.27%

Specificity 96.79% 96.78% 90.90% 74.42%
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3.6. Addressing the class imbalance

We reiterate that the class imbalance represents one of the main challenges of this task. In section
2.2, we discussed minimizing its negative e↵ects by using of class weights by undersampling (de-
creasing the number of samples from the majority class) and oversampling (increasing the number
of samples from the minority class.
We perform two additional experiments to attempt improving the prediction metrics: firstly, we at-

tempted to artificially increase the number of geoe↵ective events, using SMOTE. The implementation
used was provided by imbalanced-learn library (Lemâıtre et al. 2017).
This technique relies on the principles of K-Nearest Neighbors (as detailed in section 3.2). A sample

is considered to be a point in an n-dimensional space, where n is equal to the number of features.
In order to generate a new sample, an existing point from the minority class is chosen randomly,
together with k of the most similar points from the same class (i.e. nearest neighbors). Out of the k
neighbors, one is randomly selected and a new point is generated, arbitrarily, on the line determined
by the original point and its neighbor. Thus, a new sample has been created, its features’ values
being the coordinates of the newly generated point.
The sampling strategy was set to 0.1, meaning that new minority samples were created so as to

obtain a 1-10 label ratio (i.e., 1 out of 10 samples would be geoe↵ective). In order to further reduce
the imbalance to a 1-5 ratio with a reasonable amount of artificial data only, random samples from
the majority class were eliminated (random undersampling with 0.2 sampling strategy).
For this experiment, the traindev set was further split into 2 stratified subsets, further called train

(80%) and dev (20%). SMOTE was only applied on the train set. The newly obtained set was then
concateneted with the dev set, containing original data only, and shu✏ed. The resulting set was
used for cross-validated experiments. We tested the models both on the entire dataset, containing
all original and artificially generated samples, through 5-fold cross validation and on the test set
containing original data only. The results are summarized in Table 10.

Table 10. Performances of the models trained on the SMOTE augmented dataset, on the test set

Model
Linear regression
threshold = 0.9
balanced weights

KNN, 3 neighbours
Manhattan distance
distance-based weights

SVM
Linear kernel
balanced weights

ANN

Recall 75.00% 43.75% 93.75% 71.87%

Precision 17.77% 20.00% 10.20% 2.24%

F1 score 28.74% 27.45% 18.40% 4.35%

Accuracy 97.56% 98.48% 94.55% 79.28%

Specificity 97.71% 98.84% 94.55% 79.33%

Both the linear regression model and the KNN models exceed all F1 scores obtained using original
data only.
While we were able to build KNN and SVM models with higher precision values trained on original

data only, their recall values in Table 10 are higher than any obtained before. The SVM model,
for example, only misses 2 geoe↵ective events, out of the 32 present in the test set: the events on
2005-06-09 14:36, 2011-10-02 02:00 (Dst values for these events being -43, -106 nT, respectively).
For the ANN we used the same architecture as model 1 (i.e., 1 hidden layer, 3 neurons, learning

rate = 1e-3, batch size = 32, 25 epochs, balanced weights). This was the only model with lower
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performances. Nevertheless, it is important to bear in mind that the additional samples could
showcase some particularities, since they were artificially generated, as well as the fact that one
substantial disadvantage of this method is the lack of consideration regarding the positioning of the
newly generated points in relation to other existent ones, from a di↵erent class. This means that any
new point could have the exact same attribute values as a point from a di↵erent class, yet still have
a di↵erent label. Additionally, the presence of this issue is all the more justified given that there are
very few geoe↵ective examples to begin with and that, apart from the use of SMOTE, the issue of
class overlap is, as previously stated, a challenge for this project in itself.
Whilst we acknowledge the shortcomings of this technique and do not rule out the influence of

other factors, these results indicating that having more positive samples to train on could improve
the performances.
To pursue this, we present the second experiment, where we eliminate small-width CMEs, which

are shown in the literature to be less likely to be heading towards the Earth (Schwenn 2006; Zhang
et al. 2007; Chi et al. 2016). We set two threshold levels, i. selecting CMEs having the AW > 60,
limiting our data set to 7373 samples, where the ratio of geoe↵ective samples raised from 0.8% to
2.27%. ii. selecting CMEs having AW > 120, as analogous to Choi et al. (2012)), resulting in a
subset of 2360 samples, out of which 6.90% are geoe↵ective. We trained and tested the performance
of the stacked classifier on these two subsampled data sets. While the precision and F1 score values
increased (at the expense of the recall value), their improvement was not significant, as shown in
Table 9.
As mentioned in section 3.1, the choice of the threshold used for delimiting the two classes can

influence the performance, as can be seen in Table 2. The results in Table 9 were obtained using 0.7
and 0.5, respectively, as thresholds for the logistic regressors used as part of the ensembles. These
values were chosen empirically.
The model still yielded 106 false alarms (130 for the full set), out of which 91 (92 for the full set)

were full halos on the first subset, and 95 false alarms, out of which 85 full halos, on the second
subset respectively, as seen in Figure 7 and Table 9. This denotes that the inconspicuous di↵erences
between full halo CMEs that are geo↵ective and those that are not remained an issue even for less
imbalanced sets. In conclusion, we could not clearly establish that the low number of geoe↵ective
samples is the most influential factor that negatively impacts the model’s prediction capabilities.

Figure 7. Left: Predictions on the 1st subset (AW > 60). Right: Predictions on the 2nd subset (AW >
120)
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4. CONCLUSIONS AND DISCUSSION

The purpose of this study was to explore the usability of various ML methods for computing the
probability that a given CME will be associated with a GS. For this investigation, we also assessed and
addressed a variety of context specific issues, such as class imbalance and class overlap. We consider
that, in the case of geoe↵ectiveness prediction, the sensitivity is the most important performance
indicator, because of the high cost associated with a false negative in the eventuality of a powerful
storm. Therefore, we believe that the recall values we obtained (e.g., 80.28% for the stacked classifier)
prove the practical utility of our models, given that only solar parameters have been used, which
ensures extended warning times.
Apart from the numerical values of the performance metrics, a series of significant observations

should be noted. One of the most important remarks emerged from this study is the association
between the majority of the false alarms reported by our models with full halo CMEs. This is in
agreement with the current beliefs that these ejections are the ones having the highest probabil-
ity of being geoe↵ective, as well as being associated with the most powerful storms (Gopalswamy
et al. 2007b). Therefore, while the precision values are low, they are justified by the high rate of
geomagnetic storms caused by full halo and/or fast CMEs (e.g. 113 out of 172 geoe↵ective CMEs
had an angular width of 360; 537 CMEs having an angular width of 360 were not geoe↵ective). One
notable remark is that halo CMEs are observed equally well originating on both the frontside and the
backside of the Sun. While backside CMEs do not reach Earth and, hence, are not geoe↵ective, the
observations and catalogs used for this study do not discern between the two classes. Therefore, we
did not include such separation in the model setups. An additional consideration is that threshold
adjustments were the most e↵ective technique for increasing precision values. Furthermore, using
the original values of the independent features led to better results than using the values obtained
after lowering the number of dimensions by using PCA, indicating the original CME attributes used
are appropriate inputs for such studies. Lastly, most models trained on SMOTE augmented data
exceeded the average performance values obtained with real data only, on the test set.
The present study adds a number of original contributions to the growing body of research on

the application of ML in the field of heliophysics. To the best of our knowledge, no previous studies
focused on this topic created artificial data samples using SMOTE, introduced mechanisms for dealing
with potentially geoe↵ective events or employed UMAP for data visualization.
Our experiments use a considerably more extensive dataset than the ones used by Srivastava (2005)

(64 geoe↵ective CMEs) and Besliu-Ionescu & Mierla (2021) (2796 CMEs, 32 geoe↵ective ones), who
employ logistic regression models for predictions.
Our results are also comparable with those obtained by Choi et al. (2012). We used a more extensive

dataset, i.e., not limited to halo CMEs, and incorporated minor CMEs with -50 nT < Dst 6 -30 nT.
Their SVM model (RBF kernel, C = 2�5, � = 2�15) obtained 76% sensitivity, together with 28%
precision, based on a narrower definition for geoe↵ectiveness (where a geoe↵ective event is defined
as being associated with Dst < -50 nT in that work), therefore not including weak storms. Most of
our models, including the stacked classifier, compare favourably to this in terms of the proportion of
geoe↵ective CMEs identified, while in turn obtaining a lower precision, which might be explained by
our inclusion of both non-halo CMEs and weak storms in our dataset.
Similarly, Uwamahoro et al. (2012) only include GS with Dst 6 -50 nT and halo CMEs in their

study on using neural networks for predicting the geoe↵ectiveness. Their results (86% sensitivity,
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81.4% precision) are obtained with a 3 layer network that takes interplanetary data as inputs, in
addition to solar ones. While these values appear promising, the use of interplanetary parameters
substantially limits the warning time to less than a day, given that this data is collected closer to
Earth. This is the reason why the authors also emphasize the importance of prediction models that
only use solar parameters, which are accessible earlier and can lead to up to 3-4 days of warning
time. Such a model could be used for filtering out most CMEs with high chances of not being
geoe↵ective, therefore creating warnings for potentially geo↵ective ones with days in advance. Their
actual geoe↵ectiveness could, then, be estimated with more complex methods and higher precision
when more ongoing data has been collected.
Fu et al. (2021) obtained a similar F1 score (27%), with a lower accuracy value (75%) using deep

learning with only solar images as inputs. Although the main scope of their work is di↵erent (i.e.,
predicting the arrival time) and the methods cannot be directly compared, the di↵erence between
accuracy values is notable. Our future goals consist of assessing the feasibility of augmenting our
method with image based ML methods and results, with the hope of enhancing the results presented
here.
We consider our results to be promising in terms of recall values, in spite of the limitations imposed

by the nature of the data. This research shows that, using only the independent CME solar attributes
available online, easily interpretable models such as logistic regressions can correctly identify over
75% of the geoe↵ective CMEs. In fact, the increased complexity of the model (e.g., neural network)
did not translate, in this case, into substantially increased prediction performances. Our best model
is the stacking classifier with 2 estimators: a logistic regression with a 0.9 threshold for discerning
between classes and a KNN model with uniform weights, 7 neighbours and Manhattan distance, tied
together by a meta learner in the form of an additional logistic regression, with balanced weights.
We considered this to be the best performing model, based on having the highest value for the
recall and f1 score pair, thus having the best recall-precision balance (based on f1 score), while also
identifying most of the geoe↵ective events (based on recall). This model correctly identified 80.28%
of the geoe↵ective events, with a precision of 15.19%, based on 5-fold cross-validation on the entire
dataset , as shown in Table 9.
We believe the results obtained in this study might be enhanced by including comprehensive flare

associations. While such associations were not included in this work, this could be a fruitful direction
for further exploration. An example of such an association is the flare to CME association list of
Yashiro et al. (2006). This, however, only includes flares of M1.0 class, which would severely limit
our already small sample of geoe↵ective events. Thus, it may be significant to expand the Yashiro
et al. (2006) list to include smaller C, or even B flares that might be linked to geoe↵ective CMEs
from filament eruptions. We believe a comprehensive set of associations covering the majority of the
geoe↵ective events studied here would sort out additional uncertainty factors, such as the back-halo
CMEs, and might significantly improve the model metrics described in this work.
Lastly, we mention that the underlying challenges associated with this task, namely the extreme

class imbalance, the low number of variables available at the moment and the issue of class overlap,
remain significant obstacles for this type of predictions. This exploratory study presents encouraging
results using numerical data only. We are further exploring the extension of our research to include
solar image data, as well as more complex learning frameworks.
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